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ABSTRACT

We discuss the applicability of the kinematic a-effect formalism at high magnetic
Reynolds numbers. In this regime the underlying flow is likely to be a small-scale
dynamo, leading to the exponential growth of fluctuations. Difficulties arise with both
the actual calculation of the o coefficients and with its interpretation. We argue that
although the former may be circumvented — and we outline several procedures by
which the the « coefficients can be computed in principle — the interpretation of
these quantities in terms of the evolution of the large-scale field may be fundamentally

flawed.
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1 INTRODUCTION

Mean field electrodynamics was formalised over forty years
ago in a remarkable paper by Steenbeck, Krause & Réadler
(1966). Within its framework it is possible to derive an equa-
tion for the evolution of a magnetic field on a scale large
compared with that of the velocity. This equation is much
simpler to solve than the induction equation from which it
is derived. Consequently, it has had an enormous influence
on dynamo theory to this day.

Strictly speaking, mean field electrodynamics is a kine-
matic theory that addresses the growth of a weak seed field.
Its function is thus to predict the growth rate and structure
of the generated magnetic field. In its simplest form, where
the underlying velocity is isotropic and homogeneous, the
evolution equation for the large-scale field depends on two
quantities; «, the mean induction, and (3, the turbulent dif-
fusivity. The growth rate of a field of length scale 1/k is
then

s = ak — k> (1)

(Moffatt 1978). The beauty of this result is that provided
« is non-zero, dynamo growth is guaranteed on sufficiently
large scales. In the kinematic limit the coefficients o and
are determined solely by the properties of the velocity and
by the magnetic Reynolds number Rm.

Mean field electrodynamics relies on a scale separation
between fluctuating and mean quantities. Provided such a
scale separation can be enforced, the formalism is valid for
any value of Rm. One of the challenges of the theory is to
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calculate a and ( in terms of properties of the velocity. If
Rm is small this can be rigorously accomplished by use of
what is known as the first order smoothing approximation
(FOSA); if Rm is large, the determination of the coefficients
«a and 3 becomes more problematic. Indeed there has been
considerable discussion over whether results obtained under
FOSA can be extended to the high Rm regime, where the ap-
proximation is not valid (see Moffatt 1978, Krause & Réadler
1980). However, we believe that there is a more fundamen-
tal problem associated with the high Rm regime, namely the
exponential growth of magnetic fluctuations (small-scale dy-
namo action). In this case scale separation cannot be main-
tained and the whole idea of mean field theory breaks down.
In this paper we argue that even if the coefficients o and
can be determined they fail to provide information about
the rate of growth of the large-scale field.

In §2 we give a brief outline of the formulation of mean
field electrodynamics and the derivation of the o and 3 co-
efficients. In §3 we introduce the various methods that are
used to determine o and B. In §4 we discuss convergence
and issues relating to the influence of initial conditions and
the requirements on sample size in order to achieve a given
accuracy. In §5 we discuss the problems that arise with the
physical interpretation of the a and 3 coefficients at high
Rm.

2 FORMULATION OF MEAN FIELD
ELECTRODYNAMICS

The motivation for mean field electrodynamics is to under-
stand the evolution of magnetic fields on scales large com-
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pared with those of the turbulent velocity responsible for
its generation. The starting point is the magnetic induction
equation,

0B

W:Vx(uxB)+nV2B7 (2)
where B is the magnetic field and u the velocity. The idea
is to introduce an average over spatial scales intermediate
between the large integral scales and the small scales char-
acteristic of the velocity, so that

B = (B) +b; ()

we shall assume that the velocity has no large scale. Taking
the average of (2) leads to the induction equations for the
mean and fluctuating components of B, namely

oB) _ 2
77V><£+77V (B), 4)

%—?:Vx(ux(B))+VxG+nV2b7 (5)
where £ = (u x B) is the mean electromotive force (emf),
and G = u X b — (u x b). In order to make progress with
equation (@) one needs to relate € to (B). In the kinematic
limit, in which u is independent of B, this can be achieved
by noting that the linearity of equation () leads to a linear
expression of the form (Moffatt 1978)

1o}
gi:Oéij<B>j+ﬁijkaTk<B>j+"'a (6)

where «;; and B;x are pseudo-tensors dependent on the
properties of the velocity u and on 7.

The simplest case to consider, which still captures the
essence of the problem, is that in which the velocity is ho-
mogeneous and isotropic and hence ay; and (;;; take the
form a;; = adiy; and Bijr = Peiji. Here o is a pseudo-
scalar and hence is non-zero only for turbulence lacking re-
flectional symmetry; 3, on the other hand, is a true scalar
and hence can be non-zero even for reflectionally symmetric
turbulence. Substituting « and (3 into equation (@) gives

o(B)

ot
The interpretation of o and ( is straightforward: « rep-
resents mean induction and (8 a turbulent diffusivity. The
simplest solution of this equation can be obtained for the
case when V x (B) = k(B), in which case the growth rate
is given by equation ().

It is easy to show that if the magnetic Reynolds num-
ber Rm is small then the G term in equation (@) can be
neglected. 1 In this case the fluctuations in the magnetic
field arise solely from interactions between the velocity and
the mean magnetic field; thus for the case when the mean
field (B) is uniform (and hence constant in time) these are
bounded by some power of Rm. Solutions of equation (&) can
be readily obtained, giving explicit expressions for . and (.
The practice of neglecting the G term is often referred to as
the quasi-linear approximation or the first order smoothing
approximation.

=aV x (B) + (n + B)V*(B). (7)

1 It can also be neglected if the correlation time of the velocity is
sufficiently small; here though we shall mainly be concerned with
the case when it is comparable with the turnover time.

When Rm is large one is no longer justified in neglecting
the G term. In this regime there are no closed form solutions
for b and one typically has to rely on numerical solutions of
(B). Once the solutions for b are determined then the coeffi-
cients a and  can be reconstructed. The problem becomes
particularly acute when small-scale dynamo action occurs
and the fluctuations in b grow exponentially. Later we shall
argue that the onset of small-scale dynamo action does not
just introduce technical difficulties into the determination of
the coefficients o and (3 but does in fact undermine the as-
sumption of scale separation and hence the very foundation
of the mean field approach.

3 TECHNIQUES FOR CALCULATING a AND
B

In order to fix ideas let us consider a turbulent isotropic ho-
mogeneous flow, which may or may not be helical, at high
Rm in a periodic domain. We assume further that the veloc-
ity has a well-defined correlation length ¢ and, where neces-
sary, we consider domains of size much greater than ¢. For
such a system it is important to ask what can be measured
in terms of o and (3 and, crucially, what can be inferred
about the initial growth of a magnetic field on large scales.

In this section we shall discuss in detail various ap-
proaches that have been used in the determination of o and
3. The first, and most natural, is to consider an experiment
in which a uniform magnetic field Bg is applied, in the z-
direction, say. In this case

(uxB)-z
. ®

where (-) denotes a volume average. The necessary size of
the volume will be discussed presently. We note that since
u has zero average then B can be replaced by b in equation
@). The attractive feature of this procedure is that since
By is uniform then scale separation is guaranteed. Clearly
though this method can be used only to determine o but
not (3.

In order also to determine (3 this approach can be mod-
ified by considering large-scale fields with non-zero gradient.
From the definition

€ =(uxb)=a(B)—3(VxB) 9)

it is clear that « and B can be determined through the
consideration of two independent large-scale magnetic fields
yielding two independent measures of £. Here b and (B) are
defined according to expression (@) and B is obtained from
solution of the full induction equation (). A variant of this
method, sometimes referred to as the test field procedure, is
obtained by taking (B) to be a fixed (i.e. time-independent)
test field and b to be the solution of the fluctuating equation
(@) driven by that specific test field (Schrinner et al. 2005).

An altogether different procedure can be constructed
by considering a Lagrangian approach. If X(a,t) represents
the position at time ¢ of a fluid element initially located at
position a then

Xi(a7 t) = ui(X(avt)7t)7 (10)
where u is the (Eulerian) fluid velocity. The evolution of an
infinitesimal line element along the trajectory is given by

5:Ci(a7 t) = Jij (a7 t)éxj(a7 0)7 (11)
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where J;; is the Jacobian satisfying

_ 811,1'

o 8£Ck

The correspondence between expression ([II) and the
Cauchy solution for a magnetic field in a perfect conductor
(infinite Rm) led Moffatt (1974) to derive expressions for
a and [ in terms of Lagrangian quantities, formally valid
when Rm is infinite. The expression for « is given by

Jij (X(a,t)) Jrj, Jij(a,0) =d;;. (12)

o= %eijk<ui(x,t)ij(t)>. (13)

The corresponding expression for 3 is somewhat involved
and can be found as equation (7.116) in Moffatt (1978).
The average here is over trajectories, which can be realised
in two ways. One is for fixed a and many realisations of
the velocity; the other is for many different values of a for a
single realisation of the velocity. The former can be regarded
as an ensemble average, whereas the latter can be regarded
as a volume average. This procedure can be extended to the
case of finite Rm by adding a randomly fluctuating delta-
correlated velocity to equation (I0) (Drummond & Horgan
1986).

4 INFLUENCE OF INITIAL CONDITIONS
AND SAMPLE SIZE

All of the procedures above involve evolving the fluctuating
magnetic field to a certain time and then taking either a vol-
ume average or an average over trajectories. It is important
that the average is taken after sufficient time has elapsed
such that there is no influence of the initial conditions. This
will typically take a few turnover times, the precise value de-
pending on the initial condition for b, on the velocity u and
on Rm. Two cases must be distinguished. In one case Rm
is below the threshold for small-scale dynamo action; here
the volume integrals involved in the measurement of the emf
must be taken only after (b2>7 say, has become stationary.
In the other, the small-scale dynamo is operative and even-
tually will cause the fluctuations to grow exponentially with
a well defined growth rate s; here the measurement can be
taken only after (b®)exp(—2st) has become stationary.

The above considerations apply equally to either the
Eulerian or Lagrangian methods provided Rm is finite. In
the Lagrangian approach with no stochastic component (Rm
infinite) there are no eigenfunctions and the different mo-
ments of b will grow at different rates. A possible strategy
is to integrate until the flux shows a well-defined exponential
growth. Interestingly, according to the flux conjecture (Finn
& Ott 1990), this growth rate is identical to that of the fast
dynamo growth rate in the limit as Rm — oo.

The size of the volume over which averages are taken is
also crucially important since ultimately it determines the
size of the error. In order to estimate the required volume
we make use of the relation

2
N~(2), (14)

€
where o is the standard deviation, € is the desired accuracy,
measured, say, by the size of the error bars, and N is the
number of uncorrelated contributions to the average. If the

turbulent velocity has a characteristic eddy size £ then it is

reasonable to assume that the emf has a comparable charac-
teristic scale; N then denotes the number of patches of size
¢ that are needed to achieve the required accuracy. To pro-
ceed further we need an estimate for o. For the evaluation
of a it is reasonable to assume that

|u x b| |b|
~ |ul ;
(B (B
where |u x b| and |u] refer to typical values of these quan-
tities. If there is no small-scale dynamo action then
|b|
(B
where 1/2 < ~1 < 1, its value depending on the velocity.

This can be readily converted into an estimate for the linear
size of the domain needed for accurate computation of the

averages, namely
7\ 2/3
Lt (M> . (17)

Oq "~

(15)

~ Rm7, (16)

€

The situation becomes more complicated when small-scale
dynamo action occurs and |u X b| increases exponentially
at the small-scale dynamo growth rate. For the cases where
the large-scale field is either uniform or held constant (the
test field case) the contributions to the average grow expo-
nentially with the small-scale dynamo growth rate. Here the
requisite linear size of the domain takes the form

Y2 st 2/3
I~ 0 [u[Rm?2e™ 7 (18)
€

for some O(1) exponent 7s.

In the case when (B) is itself time-dependent the es-
timate for L depends on the magnitude of the ratio of the
fluctuating emf to that of the mean field, both of which are
growing exponentially. With this method, both the fluctu-
ating field b and the mean field (B) are obtained from the
solution of the induction equation (2)); there is a single dy-
namo growth rate and therefore the fluctuating and mean
fields will eventually grow at exactly the same rate. In this
case L is similar to that in (I7) but with a different O(1)
exponent, 3.

The above discussion has been couched in terms of vol-
ume averages. For the cases when the contributions to the
averages are bounded, one can conceive of combining vol-
ume and time averages. However, when the contributions
are growing exponentially, such a procedure is not tenable.

For the Lagrangian method the equivalent issue con-
cerns the number of independent trajectories needed to de-
termine . The source of concern here is that in ([I3) the Ja-
cobian on average grows exponentially with a rate given by
the largest Lyapunov exponent. So, once again, the number
of independent trajectories needed in the averaging proce-
dure grows exponentially.

5 WHAT DOES IT ALL MEAN?

The considerations above suggest that the coefficients a and
[ can, at least in principle, always be computed. However,
in practice, the size of the computational domain (or the
number of trajectories) required may be extremely large,
and indeed, in some cases when small-scale dynamo action
is present, may even be increasing exponentially in time.
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With the exception of the test field model all methods
(Eulerian and Lagrangian) are based on averages of the ex-
act solution of the induction equation, and therefore should
yield the same results. The test field procedure, by contrast,
invokes a predetermined arbitrary mean field. The quantities
«a and ( calculated through this technique will therefore be
approximations to the true values of a and 3, whose quality
will depend on how well the true mean field is approximated
by the choice of test field.

We now turn to the question of how a and [ relate to
the growth of a dynamo field. First consider the case when
no small-scale dynamo action is observed. Here, af/3 (i.e.
k€) must be small; for if it were not then, by equation (),
one would observe dynamo action on a scale £ — contrary
to our assumption. One can conceive of a sequence of exper-
iments of varying spatial extent L. When L ~ £ then, by as-
sumption, no dynamo action is observed. As L is increased,
dynamo action will first set in when L = 3/«. Increasing L
further will lead to an increase in the growth rate until its
maximum is reached at L = 23/a. Further increases in L
will not lead to any further increases in the growth rate. So
in the absence of small-scale dynamo action, everything is
fine, and « and (3 determine the growth rate of the observed
magnetic structures.

Consider now the case when small-scale dynamo action
is possible. What would be the outcome of repeating the
experiments described above? By assumption, dynamo ac-
tion takes place even when L ~ £. Furthermore, the dynamo
growth rate will be independent of domain size. Finally, any
average of the magnetic field on intermediate scales will grow
at exactly the same rate. Crucially, the growth rate of the
observed field has nothing to do with that predicted by equa-
tion (). A particularly striking example can be seen for
the case of a non-helical dynamo. Here « is zero and equa-
tion () therefore predicts that large-scale averages should
decay exponentially at a scale-dependent rate, whereas, as
we have just argued, any average will grow exponentially at
the small-scale dynamo growth rate.

As argued above, the validity of the mean field approach
breaks down when small scale dynamo action occurs, which
one anticipates at high Rm. Interestingly, as pointed out by
Moffatt (1978), there are problems in the high Rm limit even
within the mean field formalism, since requiring that af/3
is small is inconsistent with traditional estimates for the
turbulent a-effect (o ~ u) and the turbulent 3-effect (8 ~
fu). In this case mean field theory predicts by equation ()
that the fastest growing “mean field” has the same scale as
the fluctuations — namely a small-scale dynamo. It should
be noted however that the growth rate of this small-scale
dynamo predicted by mean field theory is not the correct
one since it relies on lack of reflectional symmetry whereas
the actual growth rate does not.

All the considerations above address the kinematic evo-
lution of magnetic fields, which formally is the relevant
regime for mean field electrodynamics. However, there have
been attempts to extend the mean field approach to the
nonlinear regime. We conclude this paper by considering a
particular case in which many of the issues we have dis-
cussed here are pertinent. It is possible to consider a case
in which the velocity, rather than being prescribed, is the
self-consistent solution of a saturated small-scale dynamo.
Here both the velocity and magnetic fluctuations are sta-

tionary, and it is therefore possible, at least in principle, to
measure « and 3. In practice this process is tricky since any
finite amplitude perturbation, such as the introduction of a
mean field, will induce a corresponding change in the veloc-
ity. Putting aside the not inconsiderable technical difficulties
involved in calculating o and 3, it behoves us to ask whether
these quantities convey useful information about magnetic
field evolution.

To make these ideas concrete we consider a very specific
case. First suppose that a numerical experiment is conducted
on a periodic domain L with L ~ ¢; we assume that small-
scale dynamo action is observed, the magnetic field grows to
a finite amplitude and saturates, and, by whatever means,
a and ( are computedH Now suppose that a new compu-
tational domain of size NL, where N is a largish positive
integer, is constructed by replication of the original domain.
Clearly, in the absence of perturbation, the solution of the
extended system will continue to evolve as N replicas of
the original system. If the system is subject to a long wave-
length perturbation then it will relax to a new state, which,
in general, is not periodic on scales smaller than NL; in
other words, the system will transfer some of its energy to
scales with wavenumbers smaller than 27/L. The question
is, will the coefficients o and (§ capture any aspect of this
relaxation process? The final state could be similar to the
initial state (i.e. that obtained from replicating the smaller
domain) or could be very different with, say, considerable
energy at large scales. However, irrespective of the nature of
the final state, the relaxation process by which it is achieved
depends on the nonlinear interactions between all the scales
larger than L and is therefore not captured by averages over
the scale L. Thus, in this case also, although « and (8 can
be measured, they do not convey useful information about
magnetic field evolution.
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